21 research outputs found

    Packing Steiner Trees

    Full text link
    Let TT be a distinguished subset of vertices in a graph GG. A TT-\emph{Steiner tree} is a subgraph of GG that is a tree and that spans TT. Kriesell conjectured that GG contains kk pairwise edge-disjoint TT-Steiner trees provided that every edge-cut of GG that separates TT has size ≥2k\ge 2k. When T=V(G)T=V(G) a TT-Steiner tree is a spanning tree and the conjecture is a consequence of a classic theorem due to Nash-Williams and Tutte. Lau proved that Kriesell's conjecture holds when 2k2k is replaced by 24k24k, and recently West and Wu have lowered this value to 6.5k6.5k. Our main result makes a further improvement to 5k+45k+4.Comment: 38 pages, 4 figure

    Structure of Cubic Lehman Matrices

    Full text link
    A pair (A,B)(A,B) of square (0,1)(0,1)-matrices is called a \emph{Lehman pair} if ABT=J+kIAB^T=J+kI for some integer k∈{−1,1,2,3,…}k\in\{-1,1,2,3,\ldots\}. In this case AA and BB are called \emph{Lehman matrices}. This terminology arises because Lehman showed that the rows with the fewest ones in any non-degenerate minimally nonideal (mni) matrix MM form a square Lehman submatrix of MM. Lehman matrices with k=−1k=-1 are essentially equivalent to \emph{partitionable graphs} (also known as (α,ω)(\alpha,\omega)-graphs), so have been heavily studied as part of attempts to directly classify minimal imperfect graphs. In this paper, we view a Lehman matrix as the bipartite adjacency matrix of a regular bipartite graph, focusing in particular on the case where the graph is cubic. From this perspective, we identify two constructions that generate cubic Lehman graphs from smaller Lehman graphs. The most prolific of these constructions involves repeatedly replacing suitable pairs of edges with a particular 66-vertex subgraph that we call a 33-rung ladder segment. Two decades ago, L\"{u}tolf \& Margot initiated a computational study of mni matrices and constructed a catalogue containing (among other things) a listing of all cubic Lehman matrices with k=1k =1 of order up to 17×1717 \times 17. We verify their catalogue (which has just one omission), and extend the computational results to 20×2020 \times 20 matrices. Of the 908908 cubic Lehman matrices (with k=1k=1) of order up to 20×2020 \times 20, only two do not arise from our 33-rung ladder construction. However these exceptions can be derived from our second construction, and so our two constructions cover all known cubic Lehman matrices with k=1k=1

    Graphical representations of graphic frame matroids

    Full text link
    A frame matroid M is graphic if there is a graph G with cycle matroid isomorphic to M. In general, if there is one such graph, there will be many. Zaslavsky has shown that frame matroids are precisely those having a representation as a biased graph; this class includes graphic matroids, bicircular matroids, and Dowling geometries. Whitney characterized which graphs have isomorphic cycle matroids, and Matthews characterised which graphs have isomorphic graphic bicircular matroids. In this paper, we give a characterization of which biased graphs give rise to isomorphic graphic frame matroids

    On Excluded Minors for Even Cut Matroids

    Get PDF
    In this thesis we will present two main theorems that can be used to study minor minimal non even cut matroids. Given any signed graph we can associate an even cut matroid. However, given an even cut matroid, there are in general, several signed graphs which represent that matroid. This is in contrast to, for instance graphic (or cographic) matroids, where all graphs corresponding to a particular graphic matroid are essentially equivalent. To tackle the multiple non equivalent representations of even cut matroids we use the concept of Stabilizer first introduced by Wittle. Namely, we show the following: given a "substantial" signed graph, which represents a matroid N that is a minor of a matroid M, then if the signed graph extends to a signed graph which represents M then it does so uniquely. Thus the representations of the small matroid determine the representations of the larger matroid containing it. This allows us to consider each representation of an even cut matroid essentially independently. Consider a small even cut matroid N that is a minor of a matroid M that is not an even cut matroid. We would like to prove that there exists a matroid N' which contains N and is contained in M such that the size of N' is small and such that N' is not an even cut matroid (this would imply in particular that there are only finitely many minimally non even cut matroids containing N). Clearly, none of the representations of N extends to M. We will show that (under certain technical conditions) starting from a fixed representation of N, there exists a matroid N' which contains N and is contained in M such that the size of N' is small and such that the representation of N does not extend to N'

    Maximum size binary matroids with no AG(3,2)-minor are graphic

    Full text link
    We prove that the maximum size of a simple binary matroid of rank r≥5r \geq 5 with no AG(3,2)-minor is (r+12)\binom{r+1}{2} and characterise those matroids achieving this bound. When r≥6r \geq 6, the graphic matroid M(Kr+1)M(K_{r+1}) is the unique matroid meeting the bound, but there are a handful of smaller examples. In addition, we determine the size function for non-regular simple binary matroids with no AG(3,2)-minor and characterise the matroids of maximum size for each rank
    corecore